Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-signaling pathways.
نویسندگان
چکیده
Oxidized low-density lipoproteins (oxLDL) generated in the hyperlipidemic state may contribute to unregulated platelet activation during thrombosis. Although the ability of oxLDL to activate platelets is established, the underlying signaling mechanisms remain obscure. We show that oxLDL stimulate platelet activation through phosphorylation of the regulatory light chains of the contractile protein myosin IIa (MLC). oxLDL, but not native LDL, induced shape change, spreading, and phosphorylation of MLC (serine 19) through a pathway that was ablated under conditions that blocked CD36 ligation or inhibited Src kinases, suggesting a tyrosine kinase-dependent mechanism. Consistent with this, oxLDL induced tyrosine phosphorylation of a number of proteins including Syk and phospholipase C γ2. Inhibition of Syk, Ca(2+) mobilization, and MLC kinase (MLCK) only partially inhibited MLC phosphorylation, suggesting the presence of a second pathway. oxLDL activated RhoA and RhoA kinase (ROCK) to induce inhibitory phosphorylation of MLC phosphatase (MLCP). Moreover, inhibition of Src kinases prevented the activation of RhoA and ROCK, indicating that oxLDL regulates contractile signaling through a tyrosine kinase-dependent pathway that induces MLC phosphorylation through the dual activation of MLCK and inhibition of MLCP. These data reveal new signaling events downstream of CD36 that are critical in promoting platelet aggregation by oxLDL.
منابع مشابه
Platelet interaction with bioactive lipids formed by mild oxidation of low-density lipoprotein.
Oxidation of low-density lipoprotein (LDL) generates pro-inflammatory and pro-thrombotic mediators that play a crucial role in cardiovascular and inflammatory diseases. Mildly oxidized LDL (mox-LDL) and minimally modified LDL (mm-LDL) which escape the uptake of macrophage scavenger receptors accumulate in the atherosclerotic intima. Oxidatively modified LDL is also present within the electroneg...
متن کاملRole for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.
BACKGROUND Oxidized LDLs (oxLDLs) and matrix metalloproteinases (MMPs) are present in atherosclerotic lesions. OxLDLs activate various signaling pathways potentially involved in atherogenesis. OxLDLs induce smooth muscle cell (SMC) proliferation mediated by the activation of the sphingomyelin/ceramide pathway and tyrosine kinase receptors. MMPs are also able to induce SMC migration and prolifer...
متن کاملRapid stimulation of tyrosine phosphorylation signals downstream of G-protein-coupled receptors for thromboxane A2 in human platelets.
Signals ensuing from trimeric G-protein-coupled receptors synergize to induce platelet activation. At low doses, the thromboxane A2 analogue U46619 does not activate integrin alphaIIbbeta3 or trigger platelet aggregation, but it induces shape changes. In the present study, we addressed whether low doses of U46619 trigger tyrosine phosphorylation independently of integrin alphaIIbbeta3 activatio...
متن کاملThe neutrophil serine protease PR3 induces shape change of platelets via the Rho/Rho kinase and Ca(2+) signaling pathways.
INTRODUCTION Proteinase 3 (PR3) is released from neutrophil azurophilic granules and exerts complex effects on the inflammatory process. PR3 catalyzes the degradation of a number of macromolecules, but the consequences on blood cells are less well defined. In the present study, the effect of PR3 on human platelets was thoroughly investigated. METHODS The experiments were performed on washed p...
متن کاملRegular Article PLATELETS AND THROMBOPOIESIS cAMP signaling regulates platelet myosin light chain (MLC) phosphorylation and shape change through targeting the RhoA-Rho kinase-MLC phosphatase signaling pathway
Platelet shape change, which is critical for spreading and stable adhesion, requires the dynamic remodeling of the actin cytoskeleton. This is a complex temporal sequence driven by signaling events that regulate actin dynamics and by proteins that bind actin directly to facilitate its polymerization. The foremost regulator of actin function in platelets is myosin IIa, and the phosphorylation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 122 4 شماره
صفحات -
تاریخ انتشار 2013